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Lecture 5:

o Conditional Probability concluded;
o Dependence vs Causality;
o Base Rate Fallacy;
o Law of Total Probability;
o Bayes Rule



Review:  Independence and Dependence

We say that two events A and B are independent if

or:

Example: 

Suppose in a particular city, 40% of  the population is male, and 60% female, and 20% 

of  the population smokes. If  male smokers are 8% of  the population, then are 

smoking and gender independent? That is, are the following two events independent?

A = Smoker

B = Male



Independence and Dependence

We say that two events A and B are independent if

or:

Example: 

Suppose in a particular city, 40% of  the population is male, and 60% female, and 20% 

of  the population smokes.  If  male smokers are 8% of  the population, then are 

smoking and gender independent? That is, are the following two events independent?

A = Smoker

B = Male

YES.        Check:

P(A ∩ B ) = 0.08 = 0.4 * 0.2 = P(A) * P(B)



Independence and Dependence

Example:   Suppose in a particular city, 40% of  the population is male, and 60% 
female, and 20% of  the population smokes.  If  male smokers are 8% of  the 

population, then are smoking and gender independent? That is, are the following two 

events independent?           A = Smoker              B = Male

S

BA

0.12 0.08 0.32

0.48

0.2
0.4

A ∩ 𝐵

0.8

B

0.2

P(A ∩ B ) = 0.08 = 0.4 * 0.2 = P(A) * P(B)



Independence and Dependence

Some important results about independence....

0.  Independence does NOT mean the events are disjoint:  If two non-empty events 
are disjoint, then they are dependent:

1.  Independence is symmetric:



Independence and Dependence

Some important results about independence....

2.  Independence extends to complements:

A and B are independent
iff        Ac and B are independent
iff        A   and Bc are independent
iff        Ac and Bc are independent

Intuition:  If knowing whether a person is male gives you no information about whether the 
person smokes, then

- Knowing if they are female gives you no information about whether they don't smoke;

- Knowing if the don't smoke gives you no information if they are male, etc., etc. 

Intuitively: Independence 
means information about A 
does not give you any 
information about B. 



Independence and Dependence

Some important results about independence....

3.  Independence is can be generalized to more than 2 events, for example,

events A, B, and C are mutually independent iff 

Simple Example:    A = 1st coin flip is heads, B = 2nd is tails, C = 3rd is heads. 

A more complex example is given in Problem 34 in the End-of-Chapter problems for 

Chapter 1, where it is shown that pair-wise independence does not imply mutual 

independence.  But: mutual independence implies pair-wise independence. 



Independence and Dependence
How does this relate to tree diagrams?  

When the events are independent, then we have the familiar tree diagram in which 
we simply write the probabilities of the events on each arc:        

B occurs (or not) A occurs (or not)

P( B )

P( Bc )

P( A )

P( Ac )

P( A )

P( Ac ) 
= 1 – P(A)

P( A ∩ B )      =   P(A) * P(B) 

P( Ac ∩ B )

P( A ∩ Bc )

P( Ac ∩ Bc )



Independence and Dependence
When the events are NOT independent, it is more complicated…

P(A | B) considers an event B followed by an event A, and how the occurence of B 
affects the occurence of A.  What are the labels on a tree diagram of this random 
experiment?

B occurs (or not) A occurs (or not)

P( B )

P( Bc )

P( A | Bc )

P( Ac | Bc )

P( A | B )

P( Ac | B )
= 1 - P( A | B )

P( A ∩ B )       = P(A | B) * P(B) 

P( Ac ∩ B )

P( A ∩ Bc )

P( Ac ∩ Bc )



Independence and Dependence

Digression:  Dependence does not imply causality!



Base Rate Fallacy

Conditional Probability is an excellent tool for 
evaluating what can happen under various conditions, 
but it is sensitive to extreme conditions. 

Traffic police have breathalyzers to detect when people are legally drunk, but they 
are not perfect. In 5% of the cases, they give "false positives," meaning they say a 
person is drunk when they are in fact sober.  However, they ALWAYS detect a truly 
drunk person (there are no "false negatives")

Suppose 1 in 1000 drivers is driving drunk, and the police officers stop a driver at 
random, and give the driver a breathalyzer test. It indicates that the driver is drunk. 
We assume you don't know anything else about him or her. 

What is the probability he or she really IS drunk? 
95%

50%

20%

2%

Confusion Matrix



Base Rate Fallacy

Conditional Probability is an excellent tool for evaluating what can happen 
under various conditions, but it is sensitive to extreme conditions. 

Traffic police have breathalyzers to detect when people are legally drunk, but they 
are not perfect. In 5% of the cases, they give "false positives," meaning they say a 
person is drunk when they are in fact sober. However, they ALWAYS detect a truly 
drunk person (there are no "false negatives")
Suppose 1 in 1000 drivers is driving drunk, and the police officers stop a driver at 
random, and give the driver a breathalyzer test. It indicates that the driver is drunk. 
We assume you don't know anything else about him or her. 

What is the probability he or she really is drunk? (-Wikipedia)

2%

Suppose we consider 1000 "trials" of this experiment. On average, 1 driver is 
drunk, and it is 100% certain that for that driver there is a true positive test result, 
so there is 1 true positive test result.

But 999 drivers are not drunk, and among those drivers we have 5%
false positive test results, so there are 49.95 false positive test results.

Therefore, the probability that one of the drivers among the 1 + 49.95 = 50.95 
positive test results really is drunk is 1/50.95 = 0.0197  or about 2%.  

.



Law of Total Probability

Conditional Probability addresses the probability of one event in the context of 
one other event. Essentially, it is case analysis:  What is the probability of event 
B in two cases, A and Ac ?



Law of Total Probability

Conditional Probability addresses the probability of one event in the context of 
one other event.  Sometimes, it gets more complicated, because there are many 
different events.    The Law of Total Probability can help!

Consider this problem (from the textbook):

I have three bags that each contain 100 marbles:

Bag 1 has 75 red and 25 blue marbles;

Bag 2 has 60 red and 40 blue marbles;

Bag 3 has 45 red and 55 blue marbles;

I choose a bag at random, and then a marble at random from that bag. What is 
the probability that I get a red marble?

Events:   A = Marble is red      B2 = Bag 2 was chosen in the first step

B1 = Bag 1 was chosen     B3 = Bag 3 was chosen



Law of Total Probability

I have three bags that each contain 100 marbles:

Bag 1 has 75 red and 25 blue marbles;

Bag 2 has 60 red and 40 blue marbles;

Bag 3 has 45 red and 55 blue marbles;

I choose a bag at random, and then a marble  at random from that bag. What is 
the probability that I get a red marble?

Events:   A = Marble is red      B2 = Bag 2 was chosen in the first step

B1 = Bag 1 was chosen     B3 = Bag 3 was chosen

P( A | B1 )  = 75/100 = 0.75           P( A | B2 ) = 60/10 = 0.6

P( A | B3 ) = 45/100 = 0.45



Law of Total Probability

The Law of Total Probability:

This is essentially conditional 

probability where the conditions

form a partition of the sample space.

Or, simply think of it as “case analysis.”

(you’ve probably be doing this already 

without calling it anything special!).



Law of Total Probability

I have three bags that each contain 100 marbles:

Bag 1 has 75 red and 25 blue marbles;

Bag 2 has 60 red and 40 blue marbles;

Bag 3 has 45 red and 55 blue marbles;

I choose a bag at random, and then a marble  at random from that bag. What is 
the probability that I get a red marble?

Events:   A = Marble is red      B2 = Bag 2 was chosen in the first step

B1 = Bag 1 was chosen     B3 = Bag 3 was chosen

P( A | B1 )  = 75/100 = 0.75           P( A | B2 ) = 60/10 = 0.6

P( A | B3 ) = 45/100 = 0.45

P(A) = P( A | B1 ) * P(B1) + P( A | B2 ) * P(B2) + P( A | B3 ) * P(B3) 

= 0.74 / 3 + 0.6 / 3 + 0.45 / 3 = 0.6



Bayes’ Rule

We can rearrange the conditional probability rule in a way that makes the 
sequence of the events irrelevant -- which happened first, A or B? Or did they 
happen at the same time?  Does it matter?  

We can  do a little algebra to define conditional probabilities in terms of each 
other:

so:  



Bayes’ Rule

The best way to understand this is to view it with a tree diagram!

P(B|A) = the probability that when  A happens, it was “preceeded” by B:

If  A has happened, what is the 
probability that it did so on the 
path where B also occurred?

Note:

A = P( A ∩ B ) ∪ P( A ∩ Bc )

So what percentage of  A is due 
to  A ∩ B ?

Same calculation as:



Bayes’ Rule

This has an interesting flavor, because we can ask about causes of  outcomes:

A Priori Reasoning -- “I randomly choose a person and observe that he is male; 
what the probability that it is a smoker?”

“The first toss of  a pair of  dice is a 5; what is the probability that the total is 

greater than 8?”

A Posteriori Reasoning -- “I find a cigarette butt on the ground, what is the 

probability that it was left by a man?”

“The total of  a pair of  thrown dice is greater than 8; what is the probability that 

the first toss was a 5?”
This seems odd, because instead of  reasoning 
forward from “causes to effects” we are reasoning 
backwards from “effects to causes” but really it is 
just different ways of  phrasing the mathematical 
formulae.  Time is not really relevant!


